FLUID POWER LAB

FLUID POWER

Fluid power is an area of technology dealing with the generation, control and transmission of pressurized fluids.

A fluid can be a gas or a liquid.

HYDRAULICS

Hydraulic systems use a liquid to transmit power.

Pneumatic Devices

1. List 2 devices that use pneumatics for operation. Describe how they use pneumatics.
\qquad

Hydraulic Devices

2. List 2 devices that use hydraulics for operation. Describe how they use hydraulics.

Device	How does it use hydraulics?

PAGE 3

CYLINDERS

Cylinders transform pressure and fluid flow into mechanical force.

ANATOMY OF A CYLINDER

Chambers A and B are sealed, so fluid can only enter or exit through the ports. Pressure in a chamber creates a force on the piston.

DOUBLE-ACTING CYLINDERS

Most cylinders are double-acting. Double acting cylinders allow pressurized fluid to flow on either side of the piston, allowing it to be powered in both directions.

Pressurized

Fluid In
Fluid in

SINGLE-ACTING CYLINDERS

Single acting cylinders are only powered in one direction. The piston
is returned by the weight of the load or a spring.

The pumps that power cylinders can usually only create a positive fluid pressure (push fluid). That is why most cylinders, like the ones shown above, are designed to only be powered by positive fluid pressure.

YOUR CYLINDERS WILL PULL \& PUSH

You will use a cylinder as a pump. The cylinder will be able to push fluid (creating a postive pressure), or pull fluid (creating a negative pressure). This will allow your cylinders with a single port to be powered in both directions.
the correct answers below:

3. There is a \square Positive pressure in line Z.
4. Piston Y is moving \square inward $\quad \square$ outward This piston is being pulled out.

SYRINGES AS CYLINDERS

You will be turning syringes (not the ones with needles) into pneumatic and hydraulic cylinders.

PAGE 5

WHAT IS PRESSURE?

Pressure is a force applied over an area:

Pressure $=\frac{\text { Force }}{\text { Area }}$
The area over which the force is applied.

Step 1: Push the piston end of a 10ml cylinder against your hand.

Step 2: Use the same amount of force as you did for step 1 to push the fluid port end of the 10 ml cylinder against your hand.

11. Both ends of the cylinder were pushed against your hand with the same force. Explain why they felt different? Hint: Pressure = Force/Area

12. How much pressure does the cube apply to the ground?
Show your work:
\qquad

Lets look at another way to write the formula Pressure = Force/Area.

Pressure $=\frac{\text { Force }}{\text { Area }}$ can be written as:

$\mathbf{P}=$ Pressure
$\mathbf{F}=$ Force
$\mathbf{A}=$ Area

Use this chart to find the formula to calculate a missing variable (force, pressure, area).

Cover the missing variable up on the chart to find the formula to calculate it:

You know: Pressure, Area You need to find: Force

Force $=$ Pressure \cdot Area

You know: Force, Area
You need to find: Pressure

Pressure = Force/Area

You know: Pressure, Force You need to find: Area

Area $=$ Force $/$ Area
13. Pressure transfers between the piston and the fluid in the cylinder. Calculate the force of the piston when the fluid applies 20lbs/in ${ }^{2}$ to it. Show your work.

What is the force
of the piston?
Piston Area $=1.5 \mathrm{in}^{2}$
4
$\sqrt{4 \times 20 l|l| l} 4$
Answer: \square lbs

Measurements of Pressure

LBS/IN ${ }^{2}$ (PSI)

A force of 1 pound applied over an area of 1 square inch produces a pressure of 1 pound per square inch ($1 \mathrm{lb} / \mathrm{in}^{2}$)

$=1 \mathrm{psi}$
pounds per square inch can be abbreviated as "psi"

PASCAL (PA)

A force of 1 newton applied over an area of 1 square meter produces a pressure of 1 pascal.

Pascal can be abbreviated as "Pa"

PASCAL'S LAW

Pascal's Law: A confined fluid transmits an externally applied pressure uniformly in all directions.

Piston A applies pressure to the fluid inside chamber B. The fluid transmits the pressure in every direction and to every surface it touches.

14. If the pressure is 5 psi in

 chamber B , what is the pressure in line \square and chamber \square ?Answer:

Squeezing a toothpaste tube is an example of Pascal's Law.

Squeezing a toothpaste tube applies an external pressure to the toothpaste fluid inside. The toothpaste transmits the force equally in all directions, pushing the toothpaste out of the end and making the tube walls bulge.
PRESSURIZING MARSHMALLOWS

CACLULATING PRESSURE

Force $=20 \mathrm{lbs}$

$2^{\text {nd }}$ Calculate Pressure:

Answer:
Air pressure inside the cylinder = 17.7psi (lbs/in²)

YOUR CALCULATION

17. Calculate the pressure inside the cylinder.

Force $=7 \mathrm{lbs}$

Show your calculations below:
\square

FLUID POWER LAB

PAGE 9

PNEUMATIC PLAY

You will need a $10 \mathrm{ml}-10 \mathrm{ml}$ pneumatic system for this section.

PUSH BOTH PISTONS

Push in both pistons. Examine what happens and answer the questions below.
Complete the following sentences using some of these words:
 pressure, force, psi, potential, compresses, kinetic. Words can only be used once.
\square is needed to move the pistons
21. An external into the cylinders.
22. The pressure applied by the pistons \square the air in the cylinders and line.
23. \qquad means the same thing as $\mathrm{lbs} / \mathrm{in}^{2}$.
24. Compressed air has \square (stored) energy.
25. After pushing both pistons in, quickly let go of one piston. The piston you let go of moves outward with \square energy.

FLUID POWER LAB

SHARING PRESSURE \& FLUID

How does fluid pressure transfer between cylinders? How can a force applied to one piston cause the other piston to move? Fill in the boxes below to find out.

PISTON C APPLIES PRESSURE

26. Complete the formula to find the pressure applied by piston C :

27. Pressure inside Chamber $G=\square \mathrm{psi}$

Fluid Transfers The Pressure

28. pressure is transmitted from chamber G through line \square to chamber \qquad .
29. The pressure inside chamber $\mathbb{H}=$ \square psi

PISTON D TURNS PRESSURE INTO FORCE

30. The fluid pressure applied to piston $\square=$ \square
31. Complete the the equation and find the force of piston \square :

We know pressure and area, but need to find force.

Force of Piston $\square=$ \square

MASTER \& SLAVE CYLINDERS

32. The cylinders above can be referred to as a master cylinder and slave cylinder.

Why do you think cylinder B is referred to as the slave cylinder?
\qquad

FRICTION

Friction is a force that opposes the motion of an object, when the object is in contact with another object or surface. It turns some of the objects kinetic energy into heat.

33. What happens to the cylinder as you move the piston? Why does this happen?

When liquid flows in a hydraulic circuit, friction produces heat (wasted energy).
How can you reduce friction in your hydraulic system?
Shorten the lines Reduce bends in the line Properly size the line
34. Draw a line that would highly resist the flow of fluid between cylinders:

VISCOSITY

Viscosity: A measure of a fluids resistance to being deformed.
Viscosity is fluid's resistance to flowing. It can also be called its thickness.

Water is "thin" and has a low viscosity

Katchup is "thick" and has a higher viscosity.
35. Write the following words in the boxes below so they are arranged from least viscous to most viscous: Milk, Honey, air, Peanut Butter

NON-NEWTONIAN FLUIDS

Fluids without a constant viscosity are called Non-Newtonian fluids. You can experience a Non-Newtonian fluid...

Mix 2 cups of cornstarch with 1 cup water.

A fluid that changes viscosity depending on the pressure applied to it.

Hydraulics

Now we will use a liquid to transmit power between cylinders. You will need a $10 \mathrm{ml}-10 \mathrm{ml}$ and a $3 \mathrm{ml}-10 \mathrm{ml}$ hydraulic systems for this section.

HYDRAULIC BOOK WORK

Create the mechanism shown. Pushing piston A should lift the book.
36. Show your teacher the completed mechanism. Explain how it changes force to pressure, transfers the pressure, and then changes it back into force.

Teacher Signature:

37. Push in piston 1 inch, piston B moves \square out of cylinder Y.
39. Pneumatic fluid is highly compressible. How compressible is hydraulic fluid?
40. When you push piston A, piston moves immediately. How is this different than the pneumatic system you previously used?

BUBBLES ARE BAD

41. Why is it bad to have air bubbles in a hydraulic system?

A. Air bubbles will not compress, but hydraulic fluid will.
\square B. The air in the system will expand or contract, causing the system to become delayed and transfer less pressure.
D. You can giggle and say that it "has gas."

WORK

The scientific definition of work: Using a force to move an object a distance.

Force: The pull or the push on an object, resulting in its movement.

The distance over which the output force is applied

WORK ON WORK

42. If schools used the scientific definition for work, how could homework be different?
\qquad
\qquad
43. The following diagram shows cylinders that have lifted weights. Place an " X " under the cylinder that has done the most work?

MECHANICAL ADVANTAGE

Mechanical Advantage is the relationship between the work going into a system, and work coming out of a system.

A nutcracker allows you to apply a force larger than you could with your bare hand.

IMA Vs. AMA

Some energy will be lost by a machine (mostly through friction).

Ideal Mechanical Advange (IMA) does not account for any energy lost. Work ${ }_{\text {in }}=$ Work $_{\text {out }}$ with IMA Actual Mechanical Advantage (AMA) accounts for energy lost. Work $_{\text {out }}$ < Work ${ }_{\text {in }}$ with AMA

Force can be traded for

IDEAL MECHANICAL ADVANTAGE

Work = Force • Distance
so...
Work $_{\text {in }}=$ Work $_{\text {out }}$ Force $_{\text {in }} \cdot$ Distance $_{\text {in }}=$ Force $_{\text {out }} \bullet$ Distance $_{\text {out }}$

Input Force
Also called "Effort"

The distance over which the input force is applied

Output Force Also called "Load"

The distance over which the output force is applied ,
42. Calculate the output force:

250lbs 25 in
\square 10in

This small cylinder is repeatedly moved up and down (a large distance) with little force.

PAGE 15

DISTANCE FOR FORCE

Set up the 3 ml to 10 ml hydraulic system, as shown, so it will lift a book. Experiment with it and answer the questions below.
43. If piston moves 1 inch, piston moves \qquad .

44. Complete the following equation to find the force at piston (Force ${ }_{\text {out }}$).

Calculate the force ${ }_{\text {out }}$ by cross multiplying.

45. Mechanical Advantage $=\square$. Caclulate by dividing the Force ${ }_{\text {out }}$ by the Force $_{\text {in }}$ or the Distance ${ }_{\text {in }}$ by the Distance out. $^{\text {. }}$

FORCE FOR DISTANCE

Set up the 3 ml to 10 ml hydraulic system, as shown, so it will lift a book. Experiment with it to answer the questions below.
46. If piston moves 1 inch, piston \mathbb{K} moves \qquad

Desk, Table, etc.
47. Complete the following equation to find the force at piston \mathbb{K}

48. Mechanical Advantage $=\square$ Caclulate by dividing the Force ${ }_{\text {out }}$ by the Force ${ }_{\text {in }}$ or

Hint: This number should be less than 1 because this sytem looses force to gain distance.

HYDRAULIC CYLINDERS = A LEVER

Two connected hydraulic cylinders act like a lever; they change the force, distance and direction movement.
49. Label the Force $_{\text {in }}$ and Force ${ }_{\text {out }}$ on the cylinders below to show a mechanical advantage similar to the lever.

50. Label the Force $_{\text {in }}$ and Force ${ }_{\text {out }}$ on the cylinders below to show a mechanical advantage similar to the lever.

$1^{\text {st }} 8 \mathrm{lbs}$ of force is applied to the piston B.
$2^{\text {nd }}$ The 8 lbs of force is divided over the area of piston B and transferred to the fluid (\square):
Force $\underset{\text { Piston's Area }}{\rightarrow} \frac{2 \mathrm{lbs}}{4 \mathrm{in}^{2}}=2 \mathrm{lbs} / \mathrm{in}^{2} \longrightarrow$ Fluid Pressure
$3^{\text {rd }}$ Pressure is transferred through fluid C (Pascal's Law) to piston \square.
$4^{\text {th }}$ Fluid \square presses against every square inch of piston \square, creating 32 lbs of force:

« Note: The $/ \mathrm{in}^{2}$ and in^{2}
$5^{\text {th }}$ Piston \square applies a downward force of 32 lbs .

FLUID POWER LAB

YOU'RE ON YOUR OWN...

A. Find the Force ${ }_{\text {out }}$, Distance ${ }_{\text {out }}$ and mechanical advantage of the hydraulic system below. Show all work.

Pressure Developed From Force Applied Over Piston Area:

Piston Force Developed From Fluid Pressure Over Piston Area:

\square

A FLUID POWERED INVENTION

B. Design and draw an invention that uses hydraulics or pneumatics to perform one of the following tasks: open a jar, crack an egg, toss a ball

Presentation	Is it well drawn and easy to understand?	$/ 3$
Function	Could it really work? Does it use fluid power?	$/ 3$
Creativity	Does is solve the task in a new and different way?	$/ 4$
	Total Points:	$/ 10$

